Retrieval of aerosol and surface properties with synthetic signals from a multi-angle, multispectral polarimeter in GRASP code

Anna Gialitaki^{1, 2}, Marios Panagi¹, Alexandra Tsekeri³, Steven D. Lloyd¹, Jose Busquets², Neil Humpage¹, and Joshua D. Vande Hey^{1, 4}

¹School of Physics and Astronomy, Earth Observation Science Group, University of Leicester, UK; ³Institute for Astronomy, Astrophysics, Space Research Centre, UN; environmental Health and Sustainability, University of Leicester, UK; ³Institute for Astronomy, Astrophysics, Space Applications, and Remote Sensing, National Observatory of Athens, Greece; ⁴Centre for Environmental Health and Sustainability, University of Leicester, UK; ³Institute for Astronomy, Astrophysics, Space Applications, and Remote Sensing, National Observatory of Athens, Greece; ⁴Centre for Environmental Health and Sustainability, University of Leicester, UK; ³Institute for Astronomy, Astrophysics, Space Applications, and Remote Sensing, National Observatory of Athens, Greece; ⁴Centre for Environmental Health and Sustainability, University of Leicester, UK; ³Institute for Astronomy, Astrophysics, Space Applications, and Remote Sensing, National Observatory of Athens, Greece; ⁴Centre for Environmental Health and Sustainability, University of Leicester, UK; ³Institute for Astronomy, Astrophysics, Space Applications, and Remote Sensing, National Observatory of Athens, Greece; ⁴Centre for Environmental Health and Sustainability, University of Leicester, UK; ³Institute for Astronomy, Astrophysics, Space Applications, and Remote Sensing, National Observatory of Athens, Greece; ⁴Centre for Environmental Health and Sustainability, University of Leicester, UK; ³Institute for Astronomy, Space Applications, and Remote Sensing, National Observatory, Space Applications, Spa

The compact Multi-angle, Multi-spectral Polarimeter (cMAP)⁽¹⁾

- ✓ Airborne demonstrator adapted from <u>MAP/CO2M</u> developed from TAS-UK
- ✓ Measures the polarization of sunlight reflected on the Earth's surface → $S = [I, Q, U, V]^T$
- ✓ 7 bands in visible and near-infrared: 410, 443, 490, 555, 670, 753 and 865nm
- \checkmark >40 different viewing angles
- ✓ Target systematic errors: 0.003 for DoLP, 3% for I

Why this study?

1. Quantify the uncertainties of the retrieved aerosol and surface properties using synthetic cMAP radiance and polarization measurements

- 2. Assess the effect of different parameters to the retrieval and product uncertainties
- 3. Is it possible to deliver the aerosol related parameters with the accuracies required for climate studies ^(6 and Table 2) using cMAP radiances?
- 4. Define optimum retrieval approach using GRASP algorithm ⁽²⁾
- 5. Define strategy (e.g. time of the day, measurement geometry) for upcoming measurement campaigns

RESULTS

Fig. 2) (upper panel) Numerical test results for GRASP/cMAP retrievals for dust aerosols. Each test is performed 50 times for 5 AOD levels (0.05, 0.2, 0.4, 0.6 and 0.8) and 4 different realizations of random noise added to the cMAP synthetic signals (1000 runs in total). Simulations were performed assuming a SZA of 60°, flight path on the solar principal plane, 48 viewing angles in the range $\pm 60^{\circ}$ (scattering angle range $\sim 58 - 180^{\circ}$), a grass underlying surface and 6 cMAP spectral bands. DoLP and radiometric accuracies of 0.003 and 3% were used. Each plot presents results only for AOD of 0.4, 0.6 and 0.8, while each subplot presents results for all AODs. Dashed lines represent the accuracy requirements for aerosol retrieval properties according to ⁽⁶⁾. (lower panel) Same but for urban pollution aerosols.

Fig. 3) Same as Fig. 2 but for the size distribution parameters (r_{eff} and σ). For dust (upper panel) and urban pollution particles (lower panel), results are shown only for the coarse and fine mode respectively. For urban pollution aerosols the results were satisfactory even for low AODs, thus no limit lines are shown.

Table 1: Retrieval setup

Retrieved aerosol parameters	Bi-modal log-normal size distribution, described by 16 triangular bins $(r_{eff,} r_v, \sigma, volume \text{ concentration for fine and coarse mode})$ Complex refractive index (m_i, m_r)		
	Sphericity fraction (f_{sph})		
	Mean layer height (same for both modes)		
	AOD, SSA, AAOD, Angstrom exponent		
Retrieved surface arameters	Bidirectional Reflectance/Polarization Distribution Function parameters (BRDF/BPDF)		
	Directional Hemispherical Reflectance		

Table 2: Required accuracies for aerosol property retrievals according to ⁽⁶⁾							
AOD	SSA	m _i	m _r	r _{eff}	σ		
0.02	0.02 (goal)-0.03 (threshold)	0.001 or 15%	0.02	0.1 µm or 10%	0.3 or 50%		

*A sensitivity study with synthetic signals generated from GRASP algorithm for cMAP airborne polarimeter is performed for different aerosol types. The results shown here are only for coarse mode dominated dust and fine mode dominated urban pollution *Retrieval errors are reduced in all cases when filtering for very low AODs (0.05 - 0.2), as expected; apart from coarse mode AOD and r_{eff} , for which the results show that it cannot be retrieved within the requirements for most cases *The latter is mostly driven by the range of scattering angles sampled (~58 - 180° here), since sharp angular features present in smaller scattering angles for coarse aerosols are not resolved *For the other parameters and even for the current setup (Table 1), the results are quite satisfactory especially for fine mode aerosols, both for spectrally dependent parameters and PSD *Alternatively, we plan to use less detailed description of the PSD⁽²⁾ to reduce the number of parameters in the inversions *Herein only the effect of random noise is examined ($\sigma_I = 0.01 - 0.03$, $\sigma_{DoLP} = 0.001 - 0.003$), but the effect of systematic errors (i.e. in viewing angles) will be also investigated *The underlying surface is assumed to be grassland, while we plan to expand this work for other land surface types

¹Spilling, D., and Walker, A., 2021, ²Dubovik, O. et al., 2011, ³Dubovik, O. et al., 2002, ⁴ The authors would like to acknowledge the use of POLDER data "POLDER/PARASOL Level-1 data originally provided by CNES (http://www.icare.univ-lille1.fr/) processed at AERIS/ICARE Data and Services Center with GRASP software (<u>https://www.grasp-open.com</u>), ⁵Schaaf, C., and Wang, Z., 2015, ⁶Mishchenko et al, 2004; The cMAP system is being under development by Thales Alenia Space (<u>https://www.thalesgroup.com/en/global/activities/space</u>), under a UK Space Agency Centre for Earth Observation Instrumentation funded activity in collaboration with the University of Leicester. The authors would like to acknowledge funding from HARMONIA cost action (CA21119) to participate to the ELS conference.